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Distorted Heisenberg algebra and coherent states for 
isospectral oscillator Hamiltonians 

David J Femindez Ct§, Luis M Nieto$ll and Oscar Rosas-OrtiztT 
t Departamento de Fisica, CINVESTAV-IPN, AP 14-740.07000 Mexico DF, Mexico 
t Departamento de Ffsica Te6rica Universidad de Valladolid, 47011 Valladolid, Spain 

Received 13 January 1995 

Abstract. The dynamical algebra associated with a family of isospecrral oscillator 
Hamiltonians is studied through the analysis of its representation in the basis of energy 
eigenstates. It is shown that this representation becomes similar to that of the standard Heisenbeq 
algebra, and it is dependent on a parameter w > 0. We call it the distorted Heisenberg algebra, 
where w is the disfodon parameter. The corresponding coherent states for an atbiuary w are 
derived. and some particular examples are discussed in detail. A prescription to produce the 
squeezing. by adequately selecting the initial state of the system. is given. 

1. Introduction 

The well known coherent states of the harmonic oscillator turned out one of the most useful 
tools of quantum theory [l-31. Introduced long ago by Schrodinger [4], they were later 
employed by Glauber and other authors in quantum optics [5-71. Further developments 
of the subject made it possible to set up some specific definitions, applicable to various 
physical systems. 

One possibility is to define the coherent states as eigenstates of an annihilation operator. 
Following this idea, the coherent states for a family~ of Hamiltonians isospectral to the 
harmonic oscillator were derived recently [8]. As there is a certain arbitrariness in the 
selection of the annihilation and creation operators for this system, the most obvious 
realization was chosen: the operators are adjoint to each other but their commutator is not 
the identity. In the same paper a different option of constructing the lowering and raising 
operators was also pursued: the creator was altered while the annihilator was not; they 
were no longer adjoint to each other, but their commutator was equal to the identity. This 
modified pair could, in principle, induce new coherent states, consistent with the application 
of a ‘displacement operator’ to the extrema1 state. However, the states thus derived turned 
out to be identical to the ones previously defined as eigenstates of the annihilator. 

In the light of these results, it is interesting to pose the following questions: can both 
ideas be unified ‘to yield lowering and raising operators which would be adjoint to each 
other and would commute to the identity, imitating the Heisenberg algebra? If so, what 
kind of coherent states would they generate? 
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The goal of this paper is to find out the answers to these questions. In section 2 
we will sketch the derivation of the family of Hamiltonians isospectral to the harmonic 
oscillator [8,9]. Section 3 contains the construction of new pairs of annihilation and 
creation operators for these Hamiltonians; we will build these pairs from the generators 
of the standard Heisenberg algebra Indeed, we will see that there is a family of such pairs 
depending on a parameter w 0. In section 4 two sets of coherent states will be found for 
arbitrary values of w: the ones derivable as eigenstates of the annihilation operator and the 
ones resulting from the application of a 'displacement' operator on the extremal state. By 
fixing some specific values of w, we will attain three particularly interesting cases which 
will be discussed in section 5. We conclude with some general remarks in section 6. 

2. The isospectral oscillator Hamiltonians HA 

We are interested in a family of Hamiltonians HA which can be derived from the harmonic 
oscillator Hamiltonian H using a variant of the factorization method 191. The standard 
factorization expresses H as two products 

(2.1) 
where H and the annihilation a and creation at operators are given by 

~ = a a t - 1  ~ = a t a + ~  I 
2 

1 d2 x2 1 d 
2dx= 2 a = - ( d  Jz ,+x ) (2.2) H = - - - + -  

It can be proved that the first decomposition in (2.1) is not unique. Indeed, there exist more 
general operators b and bt generating H: 

Hence, B ( x )  obeys the Riccati equation f l +  B2 = x2 + 1, whose general solution is 

(2.4) 

The inverted product btb is not related to H, but induces a different Hamiltonian 

The Hamiltonians H and HA are connected by the following relation: 

Therefore, if I@") are the standard eigenstates of H verifying HI@") = (n + f ) l @ , J .  the 
HAbt = bt(H + 1). (2.7) 

states defined as 

are normalized orthogonal eigenstates of HL with eigenvalues E. = n + f ,  respectively. 
The ground state of HA is disconnected from the other eigenstates, it has eigenvalue EO = f 
and satisfies bl&) = 0. In the coordinate representation it is given by 
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Summarizing this section, {HA, 111 > f i / Z )  represents a family~of Hamiltonians with the 
same spectrum as the harmonic oscillator. The relations necessary to set up the creation 
and annihilation operators of HA are 

3. Distorted Heisenberg algebra of HA 

It is important to identify now a suitable pair of annihilation and creation operators for HA. 
The obvious choice follows immediately from (2.10) [9,8]: 

A = btab At = btatb.  (3.1) 

The effective action of, let us say, the annihilation operator A comes after three intermediate 
transformations: we take an eigenstate 16,) of HA and transform it, by the action of b, in 
[@"-I), an eigenstate of H ;  then, a transforms Ipn-1) in I@&; finally, pn-l) is obtained 
through the action of bt on I $ n n - ~ ) .  A similar procedure works for At. 

As it is easily seen, the operators defined in (3.1) are reciprocally adjoint, but they do 
not commute to the identity. Different annihilation and creation operators arise if A is left 
unchanged but we define a new creator Et, with the requirement [A, Et] = 1. The operator 
E t  t u n s  out to be [SI 

where N =uta is the standard number operator. Obviously, Et  is not the adjoint of A. A 
third realization, and this is one of the results of this paper, arises when both A and At are 
substituted by new annihilation and creation operators C and Ct chosen to be reciprocally 
adjoint, and such that their commutator is the identity on a subspace 'Hs of the state space W. 

[c, ~ t ]  = 1 on x$ c 31. (3.3) 

C = bt f (N)ab Ct = bta t f (N)b  (3.4) 

[c, ctlie,) = In'(. + 1)[f(n - 1)12 - (n - ~)~n[f(n~- 2)12) le.) . (3.5) 

IC, ctiied = o IC, ctiie,) = ~[f(o)iziel), . (3.6) 

We now impose (3.3), with Xs the subspace generated by {[e"); n > 2). Defining a new 
function, g(x)  = (x + 1)*(x + 2)[f(x)]', x E N, it has to verify the difference equation 

(3.7) 

whose general solution is g(x) = x + w(x) ,  being w(x)  an arbitrary periodic function, with 
period equal to one. Therefore, f ( x )  takes the form 

In the spirit of [PI, we propose 

where f ( x )  is a real function to be determined. Taking into account (2.10). [C, Ct]  acts on 
[e,) as foiiows: 

Forn = O  b d  n = 1 we get 

g(x + 1) - g(x)  = 1 

(3.8) 
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The function f ( x )  must be real, hence, x + w ( x )  2 0, V x E N. This fact, and the 
periodicity of w ( x )  imply that the relevant value of w(x)  is w(0)  with 
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w = w(0)  2 0. (3.9) 

The form of the operators C and Ct satisfying (3.3) is then 

(3.10) 

where the subindex labels the dependence of C and Ct on the parameter w .  The action of 
C,, CL and IC,, C,?,] on ( IOn) ,  n EN} is 

(3.11) 
(3.12) 

0 n = O  
wl) n = 1 1 len) n > 2 .  

[c,, C ~ I I ~ J  = 11 - s..~ + S..~(W - i)iie,) = 

As this action resembles that of the generators of the Heisenberg algebra a,  at and [a, at]  
on the harmonic oscillator basis (len)], we are led to define the two operators 

(3.13) 

CL - c, 
J I '  P,=i ct, + c, 

JI x, = (3.14) 

They are to HA as the usual coordinate X and momentum P operators are to the harmonic 
oscillator Hamiltonian. The commutator of X ,  and P, in the basis [I&), n E N) is 

n = O  
(3.15) 

From equations (3.11)-(3.15), it can be seen that the representation of C,, Ci,  X, and P, 
on the basis {IOn),  n E N) is reducible because there are two invariant subspaces, one of 
them generated by 15'0) and the other one by {lez), It > 1). We denote them as U0 and 'Hr ,  
respectively. In U0 all the operators C,, CL, X ,  and P, are trivially represented by the 
1 x 1 null matrix. The relevant representation for those operators arises when we consider 
their action on vectors I*) E 'H?. This representation is similar to the one of the standard 
Heisenberg algebra, however, it depends on the parameter w.  This makes the difference 
between the two representations compared here. Thus, we call the 'distorted Heisenberg 
algebra' the algebra generated by C, and CL (or by X, and P,). One reason to choose 
this name is because the representation of C, and C i  on 'H, can be thought of as coming 
from that of a and at on U after two steps of distortion: first, we remove the ground 
state of the oscillator Hamiltonian, second, we deform the representation induced by the 
remaining basis vectors through the introduction of a distortion parameter w. However, it 
is important to recall that C,, CL. X, and P,,, are not simple generalizations of a,  a t ,  X 
and P ,  in the sense that it is impossible to get the action of the last ones on 'H as a limit 
procedure, for w tending to a specific value, of the action of the 6rst ones on 'Hr .  We 
postpone to section 5 the discussion of cases, for particular values of w ,  for which the 
distorted Heisenberg algebra is the closest to the Heisenberg algebra on 'H. This will give 
a better support to our terminology. Meanwhile, here and in the next section we derive the 
general results, valid for the full range w 2 0. 
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4. New coherent states of HA 

It is well known that, for a general system, there are three non-equivalent definitions for 
the coherent states [1-3]. One consists of defining them as eigenstates of the annihilation 
operator of the system, denoted here by J. Another possibility is to define them as the 
vectors resulting from the application of the unitary displacement operator exp(zJf - ZJ) 
on an extxemal state 1%). which usually is an eigenstate of J with zero eigenvalue, i.e. 
Jim) = 0 (here z E 62, the bar over z means complex conjugation, and J t  denotes the 
adjoint of J). A thiid definition characterizes the coherent states as minimum-uncertainty 
states (see also [lo]). In [SI .a set of coherent states for HA was derived using the first 
definition, with the annihilation operator A given by (3.1). An additional set of coherent 
states was found through the second definition, but employing the non-unitary displacement 
operator exp(zBt - ? A ) ,  the extremal state ]el), and the operator Bt given in (3.2). The 
two sets turned out to be equal [SI. 

In this section, new coherent states of If* will be conshucted using the first definition 
and a modified version of the second one departing from the annihilation and creation 
operators given in (3.10). In both cases, the uncertainty product of the distorted position 
and momentum operators of (3.14) on the resultant states will be found in order to compare 
our new coherent states and the standard ones, which minimize the uncertainty product 
(AX)(A.P). 

4.1. Coherent states as eigenstates of C ,  

Let us denote the coherent states [ z , w ) ,  to show explicitly their dependence on the 
parameter w. They are eigenstates of C,: 

To have their explicit form, we decompose [z, w )  in terms of the basis 10"): 
c,[z ,w)=z[z.w) z e c .  (4.1) 

Substituting this expression in (4.1) and using (3.11) we get the coefficients a,,. If we 
suppose that w # 0, we get 

(4.3) 

If we chose a1 3 0, the normalization condition leads to 

where I 4 (U. b; x )  is the hypergeometric function 

r = IzI e R, and y,  E R. We again realize, as in IS], that z = 0 is doubly degenerated with 
eigenkets 100) and le]). 

Observe that, although the caSe w = 0 is excluded of (4.3), the states Iz, w )  of (4.4) 
tend to a well defined limit when w + 0 
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We have checked this result by performing a direct calculation, similar as the previous one, 
but taking w = 0 from the very beginning, which led us to the same states (4.6) (modulo a 
phase). These will be considered again in section 5. 

D J Femdndez C et a1 

Let us analyse the completeness of the set {lea), Iz, w ) ;  z E C). We impose 

I = leo)(eol+ Iz, w ) k .  w l  W z ,  w )  

(4.7) 

s 
s = l~o)(eol+ lz ,w)(z .wl~(r ,w)rdrdrp 

where dp(z, w )  is the unknown measure. Following a standard procedure [ l l ,  121 one finds 

Here, u(r, w )  is simpler than the corresponding function obtained in [SI. It is possible to 
express any coherent states Iz', w )  in terms of the others: 

with a kernel given by 

(4.10) 

Using equation (4.7), any element Ih) E 31 can be expanded in terms of the coherent states 
as 

&z, Z, w)lz, w )  Mi!, W )  Ih) = holeo) + (4.1 1) s 
where ho (eolh), and 

(4.12) 

The time evolution of Iz, U) is quite simple: 
~~ 

where z(t) 

denoted by 

ze"', and U(t) is the evolution operator of the system from 0 to f. 
The mean value and the uncertainty of an operator K in the coherent state Iz, w )  are 

(K) (z, wlKlz, w )  AK ,/m. (4.14) 

For the Hamiltonian HA we get 

(4.15) 

By the previous construction, (C,) = z and (CA) = i. Therefore, (X,) and (P,,,) become 

(4.16) 

(4.17) 
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They are equal to the corresponding harmonic oscillator results. Let us now calculate 

Hence, 

(4.19) 

Thus, the uncertainties of X, and P,, and their product, are 

Notice that the uncertainty relation (4.21) has radial symmetry on the complex plane of z. 
A plot of it as a function of r = IzI for different values of w is shown in figure 1. As we 
can see, w/2 < (AX,)(AP,) < 4 if 0 < w < 1 and 4 < (AX,)(AP,) < w/2 if w > 1. 
Thus, the coherent states just derived are close to the minimum uncertainty ones for large 
values of r ,  and also for small values of w .  In section 5 we will find explicit values of w for 
which our coherent states become minimum uncertainty states satisfying (AX,)(AP,) = 4 
for any z .  

One question arises naturally: what happens in the harmonic oscillator l i t ?  This can 
be answered if we realize that, in the limit Il.1 -+ CO, HA + H.  Moreover, in this limit 

b + a bt + at 18,) + I*"). (4.22) 

Therefore, the corresponding limits for C, and Ci are 

(4.23) 

(4.24) 

0 .  1 2 3 
d Z I  

Ngure 1. Plot of (AXu)(APu) as a function of r = lzl for different values of w. 
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For the coherent states we have 
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(4.25) 

We see that, in general, the coherent states derived here are different from the standard ones 
of H, even though HA + H when lA[ + W. In section 5, we will analyse other limit 
cases, by approaching specific values of w, which will provide us with more insight about 
the differences and similarities of our coherent states and the standard ones. 

4.2. Displacement operator technique and coherent states 

According to the second definition, the coherent states we should now find would result 
from the application of the displacement operator D(z) = exp(zCi - ZC,) on an extremal 
state Irpo) which obeys C,lm) = 0. For HA and C, given by (2.5), (2.6) and (3.10) there 
are two exeemal states 16'0) and 181): 

c,lel) = c,po) = 0. (4.26) 

If 160) is taken, we will not obtain any additional coherent states because CLl6'0) = 0, which 
implies that 180) is invariant under the application of D(z). The only non-hivial possibility 
is to take Iqo) = 101). However, the way in which [C,, CL] acts on the basis vectors 
IOn) (see equation (3.13)) disables the factorization of D(z) to simplify the calculation of 
D(z)lel). Therefore, we decided to consider the non-unitary operator 

D,(Z) =er'? (4.27) 

and look for the states of the form 

IZ, w)d & ( Z ) I @ I ) .  (4.28) 

Using equation (3.12). we obtain 

Notice that, for w = 0, we have [z, 0)d = 1%). and there is no family of coherent states. 
The completeness of this new set, {lea), Iz, W)d; z E C}, now reads 

I = l e O ) ( e o l +  k,w)dd(ZIW[d/Ld(ZIW) 

(4.30) 

As the relevant values of w are w > 0, we can define Ud(?', w )  = r ( w )  1 Fl(w, 1; r Z )  
xq(r2,  w), and following a procedure similar to that of [ l l ,  121, it tums out that the function 
q ( x ,  w )  must satisfy 

J 
J = leo)(8o[ + IZ, W)d  d(Z, wI Ud@, U) r dr drp . 

We have to solve a typical 'momentum problem' (see [13] and references quoted therein). 
To do it, we can use the Mellin transform technique, as we did to find u(r, w )  in (4.8). and 
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we get the following result: 

X I  

( I ! )2  (n - I - 2)! 

"-2 

[-lnx + 2@(I + 1) - @(n - I  - I)] ~(1, n) = - 
I=O 

(4.32) 

x"-l 

x [ ( n  - 1)!]2 
z&(l, 1; n, n; -x) n = 1 . 2 , 3 . .  . -I- 

where P(y) = [IYy)I-'dr(y)/dy, and 2F2(lr1;  n ,  n: x )  is a generalized hypergeometric 
function [141. In the last equation, if n = 1 the sum does not appear, and the generalized 
hypergeometric function is very simple; the result is 

q(x.  1) = e-X/7c. 

In the case we ate considering, the reproducing kernel is 

(4.33) 

The time evolution of these states is equal to that of (4 .13~ ~ ( t ) l z ,  W ) d  = IZ(t), w)d. 
The mean value is defined as usual. Hence 

- 
(I%)d = 5 + r2 S ( W ,  r Z )  (C& =  CL)^ = z s ( w ,  r2 )  (4.34) 

where 

(4.35) 

From equation (3.14) one gets 

(2 + z) 
( X w ) d  = - s ( w ,  r 2 )  45 (4.36) 

i(Z - z) 
( P d d  = .JZ s ( w ,  r ' ) .  

In order to obtain ( X i ) d  and (Pi)& we find first 
- 

( C : ) d  = (CE)d = Z2~T(IU, r2) (4.37) 

where we have introduced the function T ( w ,  rZ) ,  defined as 

Therefore, 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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Now, it is very easy to get the uncertainties (AX&. (AI'&: 

(AX,): = - [T(w, r2) - ~'(w,, r')] - rz ~ ( w ,  rZ) 

D J Femcindez C et a1 

(Z + z)2 

2 

(4.42) 

(4.43) 

From (4.42) and (4.43) it is clear that, in contrast to the previous case, (Ax&, (AP,,,),j 
and their product do not have radial symmetry on the complex plane. Their dependence 
on 9 = arg(z) means that, even though the evolution of a coherent state of kind Iz, w)d 
is equal to the one of a coherent state of kind Iz, w), the uncertainties of X, and P, 
change in time for the states Iz, w)d but remain static for Iz, w )  (see equation (4.21)). This 
immediately suggests a very interesting use of the coherent states derived in this section: 
let us fix the values of w and r = 121 and let us take as initial condition one of the states 
Iz, w)d having a maximum value of (AX&. From figure 2 is is clear that this occurs for 
(0 = 0 or 'p = rr if 0 w c 1 and for (0 = rr/2 or (0 = 3r/2 if w z 1; this can also be 
proved analytically. Now, let us evolve this initial state by a time t = T/4, where T is the 
period of the potentials (2.6), which in the units we are using becomes T = 2rr. At the 
end of this interval the initial state has evolved into a different coherent state, Ize-"/Z, w)d. 
and the uncertainty (AX& will be minimum. This is nothing but a maximum efficiency 
squeezing operation on the initial coherent state. The point is that we did not have to apply 
any sophisticated sequence of external potentials on our system to induce the squeezing 
operation. If we just select an adequate coherent state Iz, W ) d  as the initial condition, the 

n , ,, , n 

Figure 2 Plot of (AX& as a function of z for two w-values: (a) w = 0.5 and (b) 
w = 5.' Notice that, for fixed values of r = IzI and w ,  the maximum of (AX& occurs 
for f,o = arg(z) = O  or x i f 0  < w c 1, while it occurs f o r p  =n/2 or3n/2if w > 1. The 
corresponding graphs for (AP,,,)d can be obtained from the previous ones by a rotation of a/2 
amund the vertical axis. 
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evolution does the work. Of course, it is possible to design a scheme aimed to produce the 
inverse process, i.e. the maximum efficiency expansion operation. It is up to the designer 
to select which of these processes he is interested in. 

Finally, the harmonic oscillator l i t  of these states is 

Once again, we notice that 12, w)do  does not coincide, in general, with a standard coherent 
State. 

5. Particular cases 

By taking three specific values of w ,  we now analyse particular situations for which our 
previous formulae take a simpler form. We will study the cases with w = 0, w = 1 and 
w = 2 .  

5.1. The case w = ~ l  

Here, the subspace X,, which is invariant under C1 and Ct , also acquires the property (3.3) 
of 7&. If we restrict the action of C1 and C/ to X,, we then get a slight modification to 
the standard representation of the Heisenberg algebra 

clien) =-led clie,) = .h [cl, cfile.) = le,) n 2 1. 
(5.1) 

The two sets of coherent states derived in section 4 become equal. 

z" C -7212 Iz, 1) = Iz, 1)d = e  
"=O 

They are the standard coherent states if we relabel the eigenstates of HA as Ipi) = 10n+l). 
The measure functions u(r, I), u&, l), and the kernels (4.10) and (4.33) are transformed 
into the standard ones: 

(z, llz', 1) = d(Z, llz', l ) d  =exp +Ez') . (5.3) 
1 

U(r, 1) = ud(T, 1) = - 
ir 

Due to the fact that the state on 31, with the minimum value of the energy is lei), ( H A )  
becomes slightly different to the standard result: 

(HA)  = ( H A ) d = $ + r Z .  (5.4) 

(AXi) (APi)  = @Xi)d(hPi)d = f . 
However, those coherent states are minimum uncertainty states, as they verify 

(5.5) 

This result justifies, once again, the name selected for the algebra generated by C, &d CL, 
because we have found one w-value for which it reduces to the standard Heisenberg algebra 
on X, c X. We will see next that w = 1 is not the only value inducing this behaviour. 
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5.2. The case w = 0 

Let us take the limit w + 0 in all formulae of sections 3 and 4. The subspace 31, 
decomposes now into two invariant subspaces: one of them is generated by 101) while the 
other one is Xs, generated by {IO,,), n > 2). The relevant representation of CO and Ci 
arises from the resht ion of these operators to Xs. We get again a slight modification of 
the standard Heisenberg algebra representation: 

D J Femcindez C et a1 

cole") = - Ion-1) 

c i iu  = GT ten+1): G . C ~ I I ~ A  = is,) n 2. 
(5.6) 

The coherent states which are eigenstates of CO, denoted as Iz, 0). are given in (4.6). 
However, those arising from the action of &(z) ,= exp(zC$, denoted as tz ,O)d,  cannot 
be found from (4.29) because those were derived ' M n g  10,) as extremal state, but now it 
does not belong to Xi,. Here, the extremal state inducing non-trivial coherent states is I&). 
A similar calculation as that of subsection 4.2 leads immediately to ]z,O)d. These states, 
modulo a phase, are equal to those obtained in (4.6): 

(5.7) 

They are again as the standard coherent states. The measure function (4.8) and the kernel 
(4.10) are equal (modulo a phase) to the standard ones, and to those of the previous section 
(see equation (5.3)). The mean value of HA is different because we depart from a different 
extremal state: 

(H..)=(H~)d=$fr', (5.8) 

(AXo)(Apo) = (AXo)&Po)d = 4. ' 

However, once again we find that Iz, 0) are minimum uncertainty states: 

(5.9) 
Thus, we have found some additional information which we did not foresee before: through 
the analysis of the coherent states resulting from the two definitions considered in section 4, 
we have been able to construct the coherent states characteristic of the third definition. 
We will next analyse the simplest particular case involving a representation qualitatively 
different from the standard Heisenberg algebra representation. 

5.3. The case w = 2 

Let us put w = 2 in all the relationships of sections 3 and 4. As in the general case of 
Section 3, the relevant subspace is X,, generated by the basis {I&), n p 1). However, 
unlike the two previous particular cases, we do not now obtain a representation of the 
standard Heisenberg algebra, but 

cJa) = .J;;TFi I%+,) (5.10) c m  = (1 - S.J z/;E 

(5.11) 

This difference is the reason that the two sets of coherent states considered in section 4 are 
not equal: 

(5.12) 
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(5.13) 

The measure functions and kernels are also different for the two families: 

1 - e-+ 1 
a(r, 2) = -~ od(r, 2)  = - er' (1 + r2)  E~ 0 2 )  (5.14) 

k R 

(5.15) 

where El ( x )  is the exponential integral function. As we could expect, the mean values of 
HA in both sets are not equal: 

Finally, it turns out that the uncertainties of X2, PZ and their product are distinct on both 
sets: 

(AXz)' = (AP# = (AXz)(APz) = (5.19) 2 

(5.20) 

(5.21) 

(5.22) 

Let us notice, once agaih that the uncerkinties of Xz and P2 on the coherent states It, 2 ) ,  do 
not have radial symmetry (see equations (5.20)-(5.22)). Then, for these states it is possible 
to design a prescription to induce a maximum efficiency squeezing operation by means of 
the natural evolution of the system, as discussed at the end of section 4. 

Until now, all our results are concerned with the intrinsic structure of HA and the 
distorted coordinate and momentum operators appropiate to this structure. Nevertheless, it 
would be interesting to find the dispersion for the standard coordinate X and momentum 
P in the coherent states here derived. This is hard to do for w and A arbitrary, but can be 
easily performed in the harmonic oscillator limit, and for particular values of w. We will' 
restrict ourselves to the case IAl -+ 00 and w = 2. This is justified because, in this limit, 
C, and C i  behave on 7-1, almost exactly as the usual annihilation and creation operators 
do on 'H: 
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CJ.ol@n) lim C:lO.) =utl+,J = n 2 1. (5.24) 

All the results derived for X Z .  Pz, Iz, 2) and Iz, 2)d remain valid in this limit, where we 
denote by lz, 2)o and Iz. 2)dO the coherent states after the limit, and (AX& (AXz)do 
the uncertainties of X 2  on both sets with the same notation for any other operator. The 
uncertainties we will obtain for X and P will be compared with those for X Z  and PZ in 
(5.19H5.22). 

First, the mean values of X = (at j a)/.& and P = i(ut - a ) / d  in the states Jz, 2)o 
are 

IAl" 

(5.25) 
. i - z  

o(z,21PIz,2)0=1--. Jz 
Z + Z  o(z. 21XlZ. 2)o = -" d 

We also evaluate 
2rz 

o(z, 21aat + a+aIz, 2)o = 1 + p 

o(z, 21aZlz, 2)o = o(z, 21ut21z, 3 0  = z2. 

(5.26) 

(5.27) 

Hence, 

o(z,21x21z.2)o= l+zZ+iZ+-  (5.28) 

O(Z, 21P21Z. 2)o = 1 - zz - iz + - (5.29) 

We get now the dispersion of X and P and their product: 
1 r2 

(AX) :  = ( A P ) :  = (AX)o(AP)o = (5.30) + G.  
For Iz, 2 ) d 0  we have 

In order to easily evaluate the deviations of X and P, we first find 

Hence, 

\ 

Using the previous results, the dispersions of X and P are given by 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 
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- 2  M z )  

Figure 3. Plot of the uncertainty p d u n  for the position X and momen" P operators a5 a 
function of L in the harmonic oscillator limit for the coherent states Iz.2)d. 

and 

(5.38) 

A plot of [ ( A X ) d o ( A P ) d o ]  as a function of z is shown in figure 3. By comparing equations 
(5.30) and (5.37), (5.38) with (5.19H5.21). we realize that both results are different. 
The reason is that the subspace 7&, which is invariant under X Z ,  4, is not invariant 
under X ,  P .  This fact induces additional terms in the formulae, which produce the final 
difference between the deviations for X ,  P and for X 2 ,  P2. 

6. Concluding remarks 

We have been able to answer the two questions posed in the introduction: there exist 
creation and annihilation operators for HA, the ones with w = 0 and w = 1, which behave 
as the generators of the Heisenberg algebra if their action is rectiicted to the invariant 
subspaces 7& and X,, respectively; the two setS of coherent states associated to each one 
of these operators became essentially equal to the standard coherent states of the harmonic 
oscillator. It is important to note that these coherent states turned out to be minimum 
uncertainty states for the distorted coordinate and momentum operators; therefore, we were 
able to conshuct indirectly the coherent states described in the third definition. If we had 
restiicted our considerations just to answering those questions, we would never have found 
the rich family of annihilation and creation operators of the distorted Heisenberg algebra 
characteristic of HA. Moreover, we would never have found the coherent states Iz, W ) d  on 
which it is possible to induce the maximum efficiency squeezing operation. 

We would like to end this paper with a short comment concerning the widely discussed 
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geometric phase [15,16]. It arises for any state I@( t ) )  which evolves in a cyclic way during 
a time interval [0,71, i.e. I@(?)) = e@I@(O)), $I E R. The phase $I can be decomposed as 
a dynamic plus a geometric part, the last one named geometric phase and denoted p. If 
the evolution is induced by the Hamiltonian N ( t ) ,  it tums out that p takes the form [15] 
(h = 1): 

B =~+J'(@(t)lN(t)l@(t))dr. 0 (6.1) 

For a time-independent Hamiltonian with equally spaced discrete spechum, any initial state 
evolves cyclically [17]. This is m e  for our family of Hamiltonians (2.5) and (2.6) and the 
coherent states of section4. They are cyclic with period t = 2n, U(Zn)[z, w )  = e-i3nI~, w )  
and U(Br) l z ,  w)d = e-i3n[z, W ) d .  A direct calculation leads us to the following expressions 
for the geometric phases: 

D J Femdndez C et al 

Hence, (Ha)  and (H& are, essentially, geometric quantities in the same sense as B and Bd 

are geometric [17]. 

Acknowledgments 

The authors acknowledge CONACYT (MBxico) for finantiai support. LMN also thanks 
the 'Cenne de Recherches Mathdmatiques' (MonlrBal) and CINVESTAV (MBxico) for kind 
hospitality, as well as DGICYT (Spain) for a fellowship and partial support (project PB91- 
0196). 

References 

[I]  Klauder 1 R and Skagentm B S 1985 Coherent states Applications in Physics and Morhmotical Physics 

[2] Perelomov A 1986 Generalized Coherent States and Their Applicatiom (Berlin: Springer) 
131 Zhang W M. Feng D H and Gilmore R 1990 Rev. Mod Phys. 62 867 
[4] Schriidinger E 1926 Natunviss. 14 664 
[5] Giauber R J 1963 Phys. Rev. 130 2529; 1963 Phys. Rev. 131 2766 
[6] Sudanhan E C G 1963 Phys. Rev. Len. 10 277 
I71 Klauder J R 1963 J. Math Phys. 4 105% 1963 J. Math Phys. 4 1058 
[SI Femhdez C D I, Hussin V and Niem L M 1994 1. Phys. A: Math Gen 27 3547 
[91 Midnik B 1984 1. Mark Pkys. 25 3387 

(Singapore: World Scientific) 

[lo] Nieto M M and Simmons L M Jr 1978 Phys. Rev. Len. 41 207 
1111 Barut A 0 and Gimdello L 1971 Commun. Math Phys. 21 41 
[I21 Beckers J and Detergb N 1989 J. Mark Phys 30 1732 
[I31 Basu D 1992 J. Moth Phys. 33 114 
[141 Bateman H 1953 Higher Tmnscendenml Functions vol 1 ed A Erdelyi (New York: McGraw Hill) 
[15] Shapere A and Wilczek F 1989 Geomenic Phases in Physics (Sigapore: World Scientific) 
[16] Femhdez C D J, Nieto L M, del Olmo M A  and Sanmder M I992 J. Phys. A: Math Gen. 25 5151 
[17] Femhdez C D J 1994 Inf. J.  Theor. Phys. 33 2037 


